QUANTIFI
 PHOTONICS

Switch

AUTOMATED
 OPTICAL SWITCH

SPECIFICATION SHEET

Add optical switching capability to your test system with Quantifi Photonics' automated optical switches. The fast and reliable optical switch will enable automated sequential testing, saving time and streamlining your test procedures.

Bidirectional

Our optical switches are bidirectional; use it in $\mathrm{N} \times \mathrm{M}$ or M $\times N$ configurations for superior versatility.

Convenient park feature

The in-built park feature on applicable models provides the convenient functionality of an optical shutter.

High repeatability
High repeatability ensures that your measurements are reliable and consistent over time.

High durability, $>3 \times 10^{7}$ cycles

High switch lifecycle of 30 million operations ensures you get reliable hassle-free usage, for a long time.

Wide coverage of operational wavelengths

One versatile tool to cover a wide variety of applications.

Low insertion loss

Maximise your power budget with the low insertion loss.

Polarization maintaining output

On the polarization maintaining (PM) models, the slow axis of polarization is aligned with the output connector key as per industry standards. The user may choose to use polarization maintaining (PM) fiber or standard singlemode fiber (SMF)

Supports single and multi-mode applications

Available in either single-mode or multi-mode fiber options for a seamless integration into your setup.

Wide variety of port configurations

Choose the number of ports and switching configuration to suit your specific application.

COHESION UI - GRAPHICAL USER INTERFACE

Simple, intuitive control with COHESIONUI ${ }^{\text {m }}$

COHESIONUI makes it simple to control our PXI or MATRIQ instruments from a PC, tablet or smartphone.
Its cutting-edge design offers a sleek modern interface, cross device compatibility, customizable views and remote network access.

STANDARD SWITCH CONFIGURATIONS

The Switch is highly customizable.

It comes with a wide range of switch configurations, fiber types and connectors. If you don't see what you need, please contact us to discuss your requirements.

Model number	Fiber type	Configuration	Connector	Wavelength	Slot count	Park state
1001	SMF-28	1×1	FC/PC, SC/PC, FC/APC, SC/APC	1260 to 1650 nm	1	No
1003	SMF-28	1×4	FC/PC, SC/PC, FC/APC, SC/APC	1260 to 1650 nm	1	Yes
1004	SMF-28	2×2 crossover	FC/PC, SC/PC, FC/APC, SC/APC	1260 to 1650 nm	1	No
1005	SMF-28	1×2 duplex	FC/PC, SC/PC, FC/APC, SC/APC	1260 to 1650 nm	2	No
1006	SMF-28	1×16	SC/PC, SC/APC	1260 to 1650 nm	2	Yes
1008 ${ }^{1}$	SMF-28	Quad 1×2	FC/PC, SC/PC, FC/APC, SC/APC	1260 to 1650 nm	2	Yes
1009	SMF-28	1×8	FC/PC, SC/PC, FC/APC, SC/APC	1260 to 1650 nm	2	Yes
1010	SMF-28	$1 \times 8 \mathrm{MT}$ connector	FC/PC, SC/PC, FC/APC and SC/APC on common port; USCONEC Elite MT on 8 channel port	1260 to 1650 nm	1	Yes
1012	SMF-28	$1 \times 12 \mathrm{MT}$ connector	FC/PC, SC/PC, FC/APC and SC/APC on Common PORT USCONEC Elite MT MALE APC on 12 channel port	1260 to 1650nm	1	Yes
1013	SMF-28	1×24 MT connector	FC/PC,SC/PC, FC/APC and SC/APC on Common PORT USCONEC Elite MT MALE APC on 24 channel port	1260 to 1650nm	1	No
1201	SMF-28	8×8 grid	FC/PC, SC/PC, FC/APC, SC/APC	1260 to 1650 nm	5	Yes
1202	SMF-28	16×16 GRID	FC/PC, SC/PC, FC/APC, SC/APC	1260 to 1650 nm	5	Yes
1101	50μ core MMF OM3	1×1	FC/PC, SC/PC, FC/APC, SC/APC	800 to 1420 nm	1	No
1103	50μ core MMF OM3	1×4	FC/PC, SC/PC, FC/APC, SC/APC	800 to 1420 nm	1	Yes
1104	50μ core MMF OM3	2×2 crossover	FC/PC, SC/PC, FC/APC, SC/APC	800 to 1420 nm	1	No
1105	50μ core MMF OM3	1×2 duplex	FC/PC, SC/PC, FC/APC, SC/APC	800 to 1420 nm	2	No
1106	50μ core MMF OM3	1×16	SC/PC, SC/APC	800 to 1420 nm	2	Yes
1107	50μ core MMF OM3	$1 \times 12 \mathrm{MT}$ connector	FC/PC, SC/PC, FC/APC and SC/APC on Common PORT USCONEC Elite MT MALE APC on 12 channel port	800 to 1420 nm	1	Yes
$1108{ }^{1}$	50μ core MMF OM3	Quad 1×2	FC/PC, SC/PC, FC/APC, SC/APC	800 to 1420 nm	2	Yes
1403	62.5μ core MMF OM1	1×4	FC/PC, SC/PC, FC/APC, SC/APC	800 to 1420 nm	1	Yes
1405	62.5μ core MMF OM1	1x 2 duplex	FC/PC, SC/PC, FC/APC, SC/APC	800 to 1420 nm	2	No
$1406{ }^{1}$	62.5μ core MMF OM1	1×16	SC/PC, SC/APC	800 to 1420 nm	2	Yes
$1408{ }^{1}$	62.5μ core MMF OM1	Quad 1×2	FC/PC, SC/PC, FC/APC, SC/APC	800 to 1420 nm	2	Yes
1409	62.5μ core MMF OM1	1×8	FC/PC, SC/PC, FC/APC, SC/APC	800 to 1420 nm	2	Yes
1303	PM Panda 1550	1×4	FC/PC, SC/PC, FC/APC, SC/APC	1522 to 1570 nm	1	Yes
1304	PM Panda 1310	1×4	FC/PC, SC/PC, FC/APC, SC/APC	1290 to 1330 nm	1	Yes
1305	PM Panda 1310	2×2 crossover	FC/PC, SC/PC, FC/APC, SC/APC	1270 to 1350 nm	1	No
1306	PM Panda 1550	2×2 crossover	FC/PC, SC/PC, FC/APC, SC/APC	1510 to 1590 nm	1	No
1307	PM Panda 1310	1×16	SC/PC, SC/APC	1250 to 1350 nm	2	Yes

Notes

1. PXI version only available with SC/PC and SC/APC connectors.

Models: 1001, 1101

Models: 1003, 1103 1303, 1304, 1403

Models: 1004, 1104 1305, 1306

Models: 1005, 1105, 1405

Models: 1409

Models: 1201, 1202

Models: 1307

Models: 1010, 1012, 1013, 1107

Our expanding range of PXIe optical test solutions are used by customers in mixed-signal test and measurement systems, reducing complexity, lowering the cost of test and accelerating time to market.

- Multi vendor, open standard with over 2500 PXI modules available
- Advanced timing and synchronization capabilities across instruments
- Low latency, high performance processing and fast data throughput
- Design and build scalable, high channel count systems
- Small footprint and lower power consumption

The MATRIQ series provides the same high-performance test capabilities of our PXIe modules in an compact benchtop design. MATRIQ instruments are simple to setup and easy to operate, making them the perfect choice for your optical lab or test bench.

- Same performance and control as our PXle modules
- Plug and play with USB or Ethernet connectivity
- Control via the web-based GUI, COHESIONUI or SCPI commands
- Compact and portable design saves benchtop space

General specifications	PXI	MATRIQ
Bus connection	PXIe	USB and Ethernet

Power specifications	PXI	MATRIQ
AC input voltage range	Please refer to the latest PXI Express Hardware Specifications published by the PXI Systems Alliance.	90 to 264 VAC
AC input current		1.3 A (115 Vac), 0.9 A (230 Vac)
$A C$ frequency range		47 to 63 Hz
DC output voltage		12 V
DC output current max		5.41 A
Dimensions (LxW×H)		$4.58 \times 2.06 \times 1.23^{\prime \prime}(116.3 \times 52.4 \times 31.3 \mathrm{~mm})$

Single-Mode Fiber Optical Switches

1x1 optical switch	$1001{ }^{\text {\| }}$ \| SMF-28			$100{ }^{19}$ \| SMF-28		
	Minimum	Typical	Maximum	Minimum	Typical	Maximum
Wavelength range	$\begin{gathered} 1260 \text { to } \\ 1650 \text { nm } \end{gathered}$	$\begin{aligned} & 1260 \text { to } \\ & 1650 \text { nm } \end{aligned}$	$\begin{aligned} & 1260 \text { to } \\ & 1650 \text { nm } \end{aligned}$	$\begin{gathered} 1260 \text { to } \\ 1650 \text { nm } \end{gathered}$	$\begin{gathered} 1260 \text { to } \\ 1650 \text { nm } \end{gathered}$	$\begin{aligned} & 1260 \text { to } \\ & 1650 \mathrm{~nm} \end{aligned}$
Insertion loss ${ }^{2,7}$		0.5 dB	1.0 dB		0.5 dB	1.0 dB
Return loss ${ }^{8}$		50 dB			50 dB	
Polarization dependent loss ${ }^{2}$			$<0.1 \mathrm{~dB}$			$<0.1 \mathrm{~dB}$
Wavelength dependent loss			$<0.3 \mathrm{~dB}$			$<0.3 \mathrm{~dB}$
Crosstalk		-80 dB			$-80 \mathrm{~dB}$	
Repeatability ${ }^{4}$			$\pm 0.1 \mathrm{~dB}$			$\pm 0.1 \mathrm{~dB}$
Damage level			$+27 \mathrm{dBm}$			+27 dBm
Durability	3×10^{7} cycles			3×10^{7} cycles		

1x4 optical switch	$1003{ }^{\text {a }}$ \| SMF-28			$1003{ }^{\text { }}$ \| SMF-28		
	Minimum	Typical	Maximum	Minimum	Typical	Maximum
Wavelength range	$\begin{aligned} & 1260 \text { to } \\ & 1650 \text { nm } \end{aligned}$	$\begin{gathered} 1260 \text { to } \\ 1650 \mathrm{~nm} \end{gathered}$	$\begin{aligned} & 1260 \text { to } \\ & 1650 \mathrm{~nm} \end{aligned}$	$\begin{aligned} & 1260 \text { to } \\ & 1650 \text { nm } \end{aligned}$	$\begin{gathered} 1260 \text { to } \\ 1650 \mathrm{~nm} \end{gathered}$	$\begin{aligned} & 1260 \text { to } \\ & 1650 \text { nm } \end{aligned}$
Insertion loss ${ }^{2,7}$		0.6 dB	0.8 dB		0.6 dB	0.8 dB
Return loss ${ }^{8}$	50 dB			50 dB		
Polarization dependent loss ${ }^{2}$			$<0.1 \mathrm{~dB}$			$<0.1 \mathrm{~dB}$
Wavelength dependent loss			0.2 dB			0.2 dB
Crosstalk			$-50 \mathrm{~dB}$			$-50 \mathrm{~dB}$
Repeatability ${ }^{4}$			$\pm 0.02 \mathrm{~dB}$			$\pm 0.02 \mathrm{~dB}$
Damage level			$+27 \mathrm{dBm}$			$+27 \mathrm{dBm}$
Durability	1×10^{9} cycles			1×10^{9} cycles		

2x2 optical switch	1004 \| SMF-28			1004 \| SMF-28		
	Minimum	Typical	Maximum	Minimum	Typical	Maximum
Wavelength range	$\begin{gathered} 1260 \text { to } \\ 1650 \mathrm{~nm} \end{gathered}$	$\begin{aligned} & 1260 \text { to } \\ & 1650 \mathrm{~nm} \end{aligned}$	$\begin{aligned} & 1260 \text { to } \\ & 1650 \mathrm{~nm} \end{aligned}$	$\begin{aligned} & 1260 \text { to } \\ & 1650 \text { nm } \end{aligned}$	$\begin{gathered} 1260 \text { to } \\ 1650 \mathrm{~nm} \end{gathered}$	$\begin{aligned} & 1260 \text { to } \\ & 1650 \text { nm } \end{aligned}$
Insertion loss ${ }^{2,7}$		0.8 dB	1.0 dB		0.8 dB	1.0 dB
Return loss ${ }^{8}$		55 dB			55 dB	
Polarization dependent loss ${ }^{2}$			$<0.05 \mathrm{~dB}$			$<0.05 \mathrm{~dB}$
Wavelength dependent loss			$<0.25 \mathrm{~dB}$			$<0.25 \mathrm{~dB}$
Crosstalk		$-55 d B$			$-55 \mathrm{~dB}$	
Repeatability ${ }^{4}$			$\pm 0.02 \mathrm{~dB}$			$\pm 0.02 \mathrm{~dB}$
Damage level			+27 dBm			+27 dBm
Durability	3×10^{7} cycles			3×10^{7} cycles		

1x2 duplex (2×4) optical switch	1005^{9} \| SMF-28			1005^{9} \| SMF-28		
	Minimum	Typical	Maximum	Minimum	Typical	Maximum
Wavelength range	$\begin{aligned} & 1260 \text { to } \\ & 1650 \mathrm{~nm} \end{aligned}$	$\begin{aligned} & 1260 \text { to } \\ & 1650 \mathrm{~nm} \end{aligned}$	$\begin{aligned} & 1260 \text { to } \\ & 1650 \mathrm{~nm} \end{aligned}$	$\begin{aligned} & 1260 \text { to } \\ & 1650 \mathrm{~nm} \end{aligned}$	$\begin{gathered} 1260 \text { to } \\ 1650 \mathrm{~nm} \end{gathered}$	$\begin{aligned} & 1260 \text { to } \\ & 1650 \mathrm{~nm} \end{aligned}$
Insertion loss ${ }^{2,7}$		0.5 dB	1.0 dB		0.5 dB	1.0 dB
Return loss ${ }^{8}$		50 dB			50 dB	
Polarization dependent loss ${ }^{2}$			$<0.1 \mathrm{~dB}$			$<0.1 \mathrm{~dB}$
Wavelength dependent loss			$<0.3 \mathrm{~dB}$			$<0.3 \mathrm{~dB}$
Crosstalk		$-80 \mathrm{~dB}$			$-80 \mathrm{~dB}$	
Repeatability ${ }^{4}$			$\pm 0.1 \mathrm{~dB}$			$\pm 0.1 \mathrm{~dB}$
Damage level			+27 dBm			+27 dBm
Durability	3×10^{7} cycles			3×10^{7} cycles		

1x16 optical switch	$1006{ }^{9}$ \| SMF-28			$1006{ }^{\text {\| }}$ \| SMF-28		
	Minimum	Typical	Maximum	Minimum	Typical	Maximum
Wavelength range	$\begin{aligned} & 1260 \text { to } \\ & 1650 \text { nm } \end{aligned}$	$\begin{aligned} & 1260 \text { to } \\ & 1650 \mathrm{~nm} \end{aligned}$	$\begin{aligned} & 1260 \text { to } \\ & 1650 \text { nm } \end{aligned}$	$\begin{aligned} & 1260 \text { to } \\ & 1650 \text { nm } \end{aligned}$	$\begin{aligned} & 1260 \text { to } \\ & 1650 \text { nm } \end{aligned}$	$\begin{aligned} & 1260 \text { to } \\ & 1650 \text { nm } \end{aligned}$
Insertion loss ${ }^{2,7}$		0.7 dB	1.0 dB		0.7 dB	1.0 dB
Return loss ${ }^{8}$	50 dB			50 dB		
Polarization dependent loss ${ }^{2}$			0.15 dB			0.15 dB
Wavelength dependent loss			0.30 dB			0.30 dB
Crosstalk			$-50 \mathrm{~dB}$			$-50 \mathrm{~dB}$
Repeatability ${ }^{4}$			$\pm 0.05 \mathrm{~dB}$			$\pm 0.05 \mathrm{~dB}$
Damage level			+27 dBm			+27 dBm

Quad (1x2) optical switch	$1008{ }^{\text {a }}$ \| SMF-28			$1008{ }^{\text { }}$ \| SMF-28		
	Minimum	Typical	Maximum	Minimum	Typical	Maximum
Wavelength range	$\begin{aligned} & 1260 \text { to } \\ & 1650 \mathrm{~nm} \end{aligned}$	$\begin{aligned} & 1260 \text { to } \\ & 1650 \mathrm{~nm} \end{aligned}$	$\begin{aligned} & 1260 \text { to } \\ & 1650 \mathrm{~nm} \end{aligned}$	$\begin{aligned} & 1260 \text { to } \\ & 1650 \mathrm{~nm} \end{aligned}$	$\begin{aligned} & 1260 \text { to } \\ & 1650 \mathrm{~nm} \end{aligned}$	$\begin{aligned} & 1260 \text { to } \\ & 1650 \text { nm } \end{aligned}$
Insertion loss ${ }^{2.7}$		0.5 dB	0.8 dB		0.5 dB	0.8 dB
Return loss ${ }^{\text {8 }}$	50 dB			50 dB	55 dB	
Polarization dependent loss ${ }^{2}$			$<0.1 \mathrm{~dB}$			$<0.1 \mathrm{~dB}$
Wavelength dependent loss			$<0.2 \mathrm{~dB}$			$<0.2 \mathrm{~dB}$
Crosstalk			-50 dB		-55dB	-50 dB
Repeatability ${ }^{4}$			$\pm 0.02 \mathrm{~dB}$			$\pm 0.02 \mathrm{~dB}$
Damage level			+27 dBm			+27 dBm
Durability	1×10^{9} cycles			1×10^{9} cycles		

1x8 optical switch	$1009{ }^{9}$ \| SMF-28			$1009{ }^{9}$ \| SMF-28		
	Minimum	Typical	Maximum	Minimum	Typical	Maximum
Wavelength range	$\begin{aligned} & 1260 \text { to } \\ & 1650 \mathrm{~nm} \end{aligned}$	$\begin{aligned} & 1260 \text { to } \\ & 1650 \mathrm{~nm} \end{aligned}$	$\begin{gathered} 1260 \text { to } \\ 1650 \mathrm{~nm} \end{gathered}$	$\begin{aligned} & 1260 \text { to } \\ & 1650 \mathrm{~nm} \end{aligned}$	$\begin{gathered} 1260 \text { to } \\ 1650 \mathrm{~nm} \end{gathered}$	$\begin{aligned} & 1260 \text { to } \\ & 1650 \mathrm{~nm} \end{aligned}$
Insertion loss ${ }^{2,7}$		0.7 dB	1.0 dB		0.7 dB	1.0 dB
Return loss ${ }^{8}$	50 dB			50 dB		
Polarization dependent loss ${ }^{2}$			$<0.10 \mathrm{~dB}$			$<0.10 \mathrm{~dB}$
Wavelength dependent loss			$<0.20 \mathrm{~dB}$			$<0.20 \mathrm{~dB}$
Crosstalk			-50 dB			-50 dB
Repeatability ${ }^{4}$			$\pm 0.05 \mathrm{~dB}$			$\pm 0.05 \mathrm{~dB}$
Damage level			+27 dBm			+27 dBm
Durability	1×10^{9} cycles			1×10^{9} cycles		

	1010 \| SMF-28			1010 \| SMF-28		
1x8 optical switch (MT connector)	Minimum	Typical	Maximum	Minimum	Typical	Maximum
Wavelength range	$\begin{aligned} & 1260 \text { to } \\ & 1650 \text { nm } \end{aligned}$	$\begin{aligned} & 1260 \text { to } \\ & 1650 \mathrm{~nm} \end{aligned}$	$\begin{aligned} & 1260 \text { to } \\ & 1650 \text { nm } \end{aligned}$	$\begin{aligned} & 1260 \text { to } \\ & 1650 \text { nm } \end{aligned}$	$\begin{aligned} & 1260 \text { to } \\ & 1650 \text { nm } \end{aligned}$	$\begin{aligned} & 1260 \text { to } \\ & 1650 \text { nm } \end{aligned}$
Insertion loss ${ }^{2,7}$		0.9 dB	1.2 dB		0.9 dB	1.2 dB
Return loss ${ }^{8}$	50 dB			50 dB		
Polarization dependent loss ${ }^{2}$			$<0.10 \mathrm{~dB}$			< 0.10 dB
Wavelength dependent loss			$<0.20 \mathrm{~dB}$			$<0.20 \mathrm{~dB}$
Crosstalk			$-50 \mathrm{~dB}$			$-50 \mathrm{~dB}$
Repeatability ${ }^{4}$			$\pm 0.05 \mathrm{~dB}$			$\pm 0.05 \mathrm{~dB}$
Damage level			+27 dBm			$+27 \mathrm{dBm}$
Durability	1×10^{9} cycles			1×10^{9} cycles		
Connector type	(FC/PC, FC/APC, SC/PC, or SC/APC) and (MTP-8/PC or MTP-8/APC)					

		\| SMF			2 \| SM	
1x12 switch (MT connector)	Minimum	Typical	Maximum	Minimum	Typical	Maximum
Wavelength range	$\begin{aligned} & 1260 \text { to } \\ & 1650 \text { nm } \end{aligned}$	$\begin{gathered} 1260 \text { to } \\ 1650 \mathrm{~nm} \end{gathered}$	$\begin{aligned} & 1260 \text { to } \\ & 1650 \mathrm{~nm} \end{aligned}$	$\begin{aligned} & 1260 \text { to } \\ & 1650 \mathrm{~nm} \end{aligned}$	$\begin{aligned} & 1260 \text { to } \\ & 1650 \mathrm{~nm} \end{aligned}$	$\begin{aligned} & 1260 \text { to } \\ & 1650 \text { nm } \end{aligned}$
Insertion loss ${ }^{2.7}$		0.9 dB	1.2 dB		0.5 dB	0.8 dB
Return loss ${ }^{8}$	50 dB			50 dB	55 dB	
Polarization dependent loss ${ }^{2}$			$<0.1 \mathrm{~dB}$			$<0.1 \mathrm{~dB}$
Wavelength dependent loss			$<0.2 \mathrm{~dB}$			$<0.2 \mathrm{~dB}$
Crosstalk			$-50 \mathrm{~dB}$		$-55 \mathrm{~dB}$	$-50 \mathrm{~dB}$
Repeatability ${ }^{4}$			$\pm 0.05 \mathrm{~dB}$			$\pm 0.02 \mathrm{~dB}$
Damage level			+27 dBm			+27 dBm
Durability	1×10^{9} cycles			1×10^{9} cycles		
Connector type	(FC/PC, FC/APC, SC/PC, or SC/APC) and (MTP-12/PC or MTP-12/APC)					

	1013 \| SMF-28			1013 \| SMF-28		
1x24 switch (MT connector)	Minimum	Typical	Maximum	Minimum	Typical	Maximum
Wavelength range	$\begin{aligned} & 1260 \text { to } \\ & 1650 \mathrm{~nm} \end{aligned}$	$\begin{aligned} & 1260 \text { to } \\ & 1650 \text { nm } \end{aligned}$	$\begin{aligned} & 1260 \text { to } \\ & 1650 \text { nm } \end{aligned}$	$\begin{aligned} & 1260 \text { to } \\ & 1650 \mathrm{~nm} \end{aligned}$	$\begin{aligned} & 1260 \text { to } \\ & 1650 \text { nm } \end{aligned}$	$\begin{gathered} 1260 \text { to } \\ 1650 \text { nm } \end{gathered}$
Insertion loss ${ }^{2,7}$		0.7 dB	1.0 dB		0.7 dB	1.0 dB
Return loss ${ }^{8}$	50 dB			50 dB	55 dB	
Polarization dependent loss ${ }^{2}$			0.15 dB			$<0.1 \mathrm{~dB}$
Wavelength dependent loss			0.3 dB			0.3 dB
Crosstalk			-50 dB		$-55 \mathrm{~dB}$	-50 dB
Repeatability ${ }^{4}$			$\pm 0.05 \mathrm{~dB}$			$\pm 0.02 \mathrm{~dB}$
Damage level			+27 dBm			+27 dBm
Durability	1×10^{9} cycles			1×10^{9} cycles		
Connector type	(FC/PC, FC/APC, SC/PC, or SC/APC) and (MTP-24/PC or MTP-24/APC)					

8×8 grid optical switch	1201° \| SMF-28			Not available in MATRIQ
	Minimum	Typical	Maximum	
Wavelength range	$\begin{aligned} & 1260 \text { to } \\ & 1650 \mathrm{~nm} \end{aligned}$	$\begin{aligned} & 1260 \text { to } \\ & 1650 \text { nm } \end{aligned}$	$\begin{gathered} 1260 \text { to } \\ 1650 \text { nm } \end{gathered}$	
Insertion loss ${ }^{2,7}$		0.9 dB	1.2 dB	
Return loss ${ }^{8}$	45 dB			
Polarization dependent loss ${ }^{2}$	$<0.4 \mathrm{~dB}$	$<0.4 \mathrm{~dB}$	$<0.4 \mathrm{~dB}$	
Wavelength dependent loss	$<0.4 \mathrm{~dB}$	$<0.4 \mathrm{~dB}$	$<0.4 \mathrm{~dB}$	
Crosstalk			$-50 \mathrm{~dB}$	
Repeatability ${ }^{4}$			$\pm 0.03 \mathrm{~dB}$	
Damage level			+27 dBm	
Durability	1×10^{9} cycles			

16x16 grid optical switch	$1202{ }^{\text { }}$ \| SMF-28			Not available in MATRIQ
	Minimum	Typical	Maximum	
Wavelength range	$\begin{gathered} 1260 \text { to } \\ 1650 \mathrm{~nm} \end{gathered}$	$\begin{aligned} & 1260 \text { to } \\ & 1650 \mathrm{~nm} \end{aligned}$	$\begin{gathered} 1260 \text { to } \\ 1650 \mathrm{~nm} \end{gathered}$	
Insertion loss 2,7		0.9 dB	1.2 dB	
Return loss ${ }^{8}$	45 dB			
Polarization dependent loss ${ }^{2}$	$<0.4 \mathrm{~dB}$	$<0.4 \mathrm{~dB}$	$<0.4 \mathrm{~dB}$	
Wavelength dependent loss	$<0.4 \mathrm{~dB}$	$<0.4 \mathrm{~dB}$	$<0.4 \mathrm{~dB}$	
Crosstalk			-50 dB	
Repeatability ${ }^{4}$			$\pm 0.03 \mathrm{~dB}$	
Damage level			+27 dBm	
Durability	1×10^{9} cycles			

Multi-mode fiber optical switches

1x1 optical switch	1101^{9} \| 50 m Core MMF OM3			1101° \| $50 \mu \mathrm{~m}$ Core MMF OM3		
	Minimum	Typical	Maximum	Minimum	Typical	Maximum
Wavelength range	$\begin{gathered} 800 \text { to } \\ 1420 \text { nm } \end{gathered}$	$\begin{gathered} 800 \text { to } \\ 1420 \text { nm } \end{gathered}$	$\begin{gathered} 800 \text { to } \\ 1420 \text { nm } \end{gathered}$	$\begin{gathered} 800 \text { to } \\ 1420 \text { nm } \end{gathered}$	$\begin{gathered} 800 \text { to } \\ 1420 \mathrm{~nm} \end{gathered}$	$\begin{gathered} 800 \text { to } \\ 1420 \text { nm } \end{gathered}$
Insertion loss 2.7		0.3 dB	0.6 dB		0.3 dB	0.6 dB
Return loss ${ }^{8}$		TBD			TBD	
Polarization dependent loss ${ }^{2}$		TBD			TBD	
Wavelength dependent loss		TBD			TBD	
Crosstalk		-80 dB			-80 dB	
Repeatability ${ }^{4}$			$\pm 0.1 \mathrm{~dB}$			$\pm 0.1 \mathrm{~dB}$
Damage level			+27 dBm			+27 dBm
Durability	3×10^{7} cycles			3×10^{7} cycles		

1x4 optical switch	1103^{9} \| $50 \mu \mathrm{~m}$ Core MMF OM3			1103^{9} \| 50 um Core MMF OM3		
	Minimum	Typical	Maximum	Minimum	Typical	Maximum
Wavelength range	800 to 1420 nm	$\begin{gathered} 800 \text { to } \\ 1420 \mathrm{~nm} \end{gathered}$	$\begin{gathered} 800 \text { to } \\ 1420 \mathrm{~nm} \end{gathered}$	$\begin{gathered} 800 \text { to } \\ 1420 \text { nm } \end{gathered}$	$\begin{gathered} 800 \text { to } \\ 1420 \mathrm{~nm} \end{gathered}$	$\begin{gathered} 800 \text { to } \\ 1420 \text { nm } \end{gathered}$
Insertion loss 2,6,7		$0.8 \mathrm{~dB}^{6}$	$1.2 \mathrm{~dB}^{6}$		$0.8 \mathrm{~dB}^{6}$	$1.2 \mathrm{~dB}^{6}$
Return loss ${ }^{8}$	20 dB			20 dB		
Polarization dependent loss ${ }^{2}$		TBD			TBD	
Wavelength dependent loss		TBD			TBD	
Crosstalk		$-25 \mathrm{~dB}$			$-25 \mathrm{~dB}$	
Repeatability ${ }^{4}$			$\pm 0.02 \mathrm{~dB}$			$\pm 0.02 \mathrm{~dB}$
Damage level			$+27 \mathrm{dBm}$			$+27 \mathrm{dBm}$
Durability	1×10^{9} cycles			1×10^{9} cycles		

2×2 optical switch	1104°	$50 \mu \mathrm{~m}$ Core MMF OM3		1104°	50 m Core MMF OM3	
	Minimum	Typical	Maximum	Minimum	Typical	Maximum
Wavelength range	$\begin{gathered} 800 \text { to } \\ 1420 \mathrm{~nm} \end{gathered}$	$\begin{gathered} 800 \text { to } \\ 1420 \text { nm } \end{gathered}$	$\begin{gathered} 800 \text { to } \\ 1420 \text { nm } \end{gathered}$	$\begin{gathered} 800 \text { to } \\ 1420 \mathrm{~nm} \end{gathered}$	$\begin{gathered} 800 \text { to } \\ 1420 \mathrm{~nm} \end{gathered}$	$\begin{gathered} 800 \text { to } \\ 1420 \text { nm } \end{gathered}$
Insertion loss ${ }^{2.5,7}$		$0.8 \mathrm{~dB}^{5}$	$1.0 \mathrm{~dB}^{5}$		$0.8 \mathrm{~dB}^{5}$	$1.0 \mathrm{~dB}^{5}$
Return loss ${ }^{8}$		TBD			TBD	
Polarization dependent loss ${ }^{2}$		TBD			TBD	
Wavelength dependent loss		TBD			TBD	
Crosstalk		-50 dB			-50 dB	
Repeatability ${ }^{4}$			$\pm 0.02 \mathrm{~dB}$			$\pm 0.02 \mathrm{~dB}$
Damage level			+27 dBm			+27 dBm
Durability	3×10^{7} cycles			3×10^{7} cycles		

1×2 duplex (2×4) optical switch	1105^{9} \| $50 \mu \mathrm{~m}$ Core MMF OM3			1105° \| $50 \mu \mathrm{~m}$ Core MMF OM3		
	Minimum	Typical	Maximum	Minimum	Typical	Maximum
Wavelength range	$\begin{gathered} 800 \text { to } \\ 1420 \mathrm{~nm} \end{gathered}$	$\begin{gathered} 800 \text { to } \\ 1420 \text { nm } \end{gathered}$	$\begin{gathered} 800 \text { to } \\ 1420 \mathrm{~nm} \end{gathered}$	$\begin{gathered} 800 \text { to } \\ 1420 \mathrm{~nm} \end{gathered}$	$\begin{gathered} 800 \text { to } \\ 1420 \mathrm{~nm} \end{gathered}$	$\begin{gathered} 800 \text { to } \\ 1420 \mathrm{~nm} \end{gathered}$
Insertion loss 2.5,7		$0.3 \mathrm{~dB}^{5}$	$0.6 \mathrm{~dB}^{5}$		$0.3 \mathrm{~dB}^{5}$	$0.6 \mathrm{~dB}^{5}$
Return loss ${ }^{\text {8 }}$		TBD			TBD	
Polarization dependent loss ${ }^{2}$		TBD			TBD	
Wavelength dependent loss		TBD			TBD	
Crosstalk		$-80 \mathrm{~dB}$			$-80 \mathrm{~dB}$	
Repeatability ${ }^{4}$			$\pm 0.1 \mathrm{~dB}$			$\pm 0.1 \mathrm{~dB}$
Damage level			+27 dBm			+27 dBm
Durability	3×10^{7} cycles			3×10^{7} cycles		

1x16 optical switch	1106 \| 50 mm Core MMF OM3			1106 \| 50 um Core MMF OM3		
	Minimum	Typical	Maximum	Minimum	Typical	Maximum
Wavelength range	$\begin{gathered} 800 \text { to } \\ 1420 \text { nm } \end{gathered}$	$\begin{gathered} 800 \text { to } \\ 1420 \mathrm{~nm} \end{gathered}$	$\begin{gathered} 800 \text { to } \\ 1420 \mathrm{~nm} \end{gathered}$	$\begin{gathered} 800 \text { to } \\ 1420 \text { nm } \end{gathered}$	$\begin{gathered} 800 \text { to } \\ 1420 \mathrm{~nm} \end{gathered}$	$\begin{gathered} 800 \text { to } \\ 1420 \mathrm{~nm} \end{gathered}$
Insertion loss 2.5,7			$1.6 \mathrm{~dB}^{5}$			$1.6 \mathrm{~dB}^{5}$
Return loss ${ }^{8}$	20 dB			20 dB		
Polarization dependent loss ${ }^{2}$		TBD			TBD	
Wavelength dependent loss		TBD			TBD	
Crosstalk			-25dB			-25dB
Repeatability ${ }^{4}$			$\pm 0.04 \mathrm{~dB}$			$\pm 0.04 \mathrm{~dB}$
Damage level			$+27 \mathrm{dBm}$			$+27 \mathrm{dBm}$
Durability	1×10^{9} cycles			1×10^{9} cycles		

1x12 optical switch (MT connector)	1107 \| 50 mm Core MMF OM3			1107 \| 50 um Core MMF OM3		
	Minimum	Typical	Maximum	Minimum	Typical	Maximum
Wavelength range	$\begin{gathered} 800 \text { to } \\ 1420 \mathrm{~nm} \end{gathered}$	$\begin{gathered} 800 \text { to } \\ 1420 \mathrm{~nm} \end{gathered}$	$\begin{gathered} 800 \text { to } \\ 1420 \text { nm } \end{gathered}$	$\begin{gathered} 800 \text { to } \\ 1420 \text { nm } \end{gathered}$	$\begin{gathered} 800 \text { to } \\ 1420 \mathrm{~nm} \end{gathered}$	$\begin{gathered} 800 \text { to } \\ 1420 \mathrm{~nm} \end{gathered}$
Insertion loss 2.5,7			$1.7 \mathrm{~dB}^{5}$			$1.7 \mathrm{~dB}^{5}$
Return loss ${ }^{8}$	20 dB			20 dB		
Polarization dependent loss ${ }^{2}$		TBD			TBD	
Wavelength dependent loss		TBD			TBD	
Crosstalk			$-25 d B$			$-25 \mathrm{~dB}$
Repeatability ${ }^{4}$			$\pm 0.04 \mathrm{~dB}$			$\pm 0.04 \mathrm{~dB}$
Damage level			$+27 \mathrm{dBm}$			+27 dBm
Durability	1×10^{9} cycles			1×10^{9} cycles		
Connector type	(FC/PC, FC/APC, SC/PC, or SC/APC) and (MTP-12/PC or MTP-12/APC)					

Quad (1x2) optical switch	$1108{ }^{9}$ \| $50 \mu \mathrm{~m}$ Core MMF OM3			$1108{ }^{9}$ \| $50 \mu \mathrm{~m}$ Core MMF OM3		
	Minimum	Typical	Maximum	Minimum	Typical	Maximum
Wavelength range	$\begin{gathered} 800 \text { to } \\ 1420 \mathrm{~nm} \end{gathered}$	$\begin{gathered} 800 \text { to } \\ 1420 \text { nm } \end{gathered}$	$\begin{gathered} 800 \text { to } \\ 1420 \mathrm{~nm} \end{gathered}$	$\begin{gathered} 800 \text { to } \\ 1420 \mathrm{~nm} \end{gathered}$	$\begin{gathered} 800 \text { to } \\ 1420 \mathrm{~nm} \end{gathered}$	$\begin{gathered} 800 \text { to } \\ 1420 \mathrm{~nm} \end{gathered}$
Insertion loss 2.7		$0.9 \mathrm{~dB}^{5}$	$1.1 \mathrm{~dB}^{5}$		$0.9 \mathrm{~dB}^{5}$	$1.1 \mathrm{~dB}^{5}$
Return loss ${ }^{8}$	20 dB			20 dB		
Polarization dependent loss ${ }^{2}$		TBD			TBD	
Wavelength dependent loss		TBD			TBD	
Crosstalk			-25 dB			$-25 \mathrm{~dB}$
Repeatability ${ }^{4}$			$\pm 0.02 \mathrm{~dB}$			$\pm 0.02 \mathrm{~dB}$
Damage level			+27 dBm			+27 dBm
Durability	1×10^{9} cycles			1×10^{9} cycles		

1x4 optical switch	$1403{ }^{\circ}$ \| 62.5u Core MMF OM1			$1403{ }^{\circ}$	62.5u Core MMF OM1	
	Minimum	Typical	Maximum	Minimum	Typical	Maximum
Wavelength range	$\begin{gathered} 800 \text { to } \\ 1420 \mathrm{~nm} \end{gathered}$	$\begin{gathered} 800 \text { to } \\ 1420 \mathrm{~nm} \end{gathered}$	$\begin{gathered} 800 \text { to } \\ 1420 \mathrm{~nm} \end{gathered}$	$\begin{gathered} 800 \text { to } \\ 1420 \mathrm{~nm} \end{gathered}$	$\begin{gathered} 800 \text { to } \\ 1420 \mathrm{~nm} \end{gathered}$	$\begin{gathered} 800 \text { to } \\ 1420 \mathrm{~nm} \end{gathered}$
Insertion loss 2.7		$0.8 \mathrm{~dB}^{6}$	$1.2 \mathrm{~dB}^{6}$		$0.8 \mathrm{~dB}^{6}$	$1.2 \mathrm{~dB}^{6}$
Return loss ${ }^{8}$	20 dB			20 dB		
Polarization dependent loss ${ }^{2}$		TBD			TBD	
Wavelength dependent loss		TBD			TBD	
Crosstalk			$-20 \mathrm{~dB}$			$-20 \mathrm{~dB}$
Repeatability ${ }^{4}$			$\pm 0.2 \mathrm{~dB}$			$\pm 0.2 \mathrm{~dB}$
Damage level			+27 dBm			+27 dBm
Durability	1×10^{9} cycles			1×10^{9} cycles		

1x2 (2x4) optical switch	1405° \| 62.5μ Core MMF OM1			1405° \| 62.5 μ Core MMF OM1		
	Minimum	Typical	Maximum	Minimum	Typical	Maximum
Wavelength range	$\begin{gathered} 800 \text { to } \\ 1420 \text { nm } \end{gathered}$	$\begin{gathered} 800 \text { to } \\ 1420 \mathrm{~nm} \end{gathered}$	$\begin{gathered} 800 \text { to } \\ 1420 \text { nm } \end{gathered}$	$\begin{gathered} 800 \text { to } \\ 1420 \text { nm } \end{gathered}$	$\begin{gathered} 800 \text { to } \\ 1420 \text { nm } \end{gathered}$	$\begin{gathered} 800 \text { to } \\ 1420 \text { nm } \end{gathered}$
Insertion loss $2.5,7$		$0.3 \mathrm{~dB}^{5}$	$0.6 \mathrm{~dB}^{5}$		$0.3 \mathrm{~dB}^{5}$	$0.6 \mathrm{~dB}^{5}$
Return loss ${ }^{8}$		TBD			TBD	
Polarization dependent loss ${ }^{2}$		TBD			TBD	
Wavelength dependent loss		TBD			TBD	
Crosstalk		-80 dB			$-80 \mathrm{~dB}$	
Repeatability ${ }^{4}$			$\pm 0.1 \mathrm{~dB}$			$\pm 0.1 \mathrm{~dB}$
Damage level			+27 dBm			$+27 \mathrm{dBm}$
Durability	3×10^{7} cycles			3×10^{7} cycles		

1x16 optical switch	$1406{ }^{\circ}$ \| 62.5μ Core MMF OM1			$1406{ }^{\text { }}$ \| 62.5 μ Core MMF OM1		
	Minimum	Typical	Maximum	Minimum	Typical	Maximum
Wavelength range	$\begin{gathered} 800 \text { to } \\ 1420 \text { nm } \end{gathered}$	$\begin{gathered} 800 \text { to } \\ 1420 \text { nm } \end{gathered}$	$\begin{gathered} 800 \text { to } \\ 1420 \text { nm } \end{gathered}$	$\begin{gathered} 800 \text { to } \\ 1420 \mathrm{~nm} \end{gathered}$	$\begin{gathered} 800 \text { to } \\ 1420 \text { nm } \end{gathered}$	$\begin{gathered} 800 \text { to } \\ 1420 \text { nm } \end{gathered}$
Insertion loss 2.5.7			$1.6 \mathrm{~dB}^{5}$			$1.6 \mathrm{~dB}^{5}$
Return loss ${ }^{8}$	20 dB			20 dB		
Polarization dependent loss ${ }^{2}$		TBD			TBD	
Wavelength dependent loss		$<0.25 \mathrm{~dB}$			$<0.25 \mathrm{~dB}$	
Crosstalk			$-25 \mathrm{~dB}$			$-25 \mathrm{~dB}$
Repeatability ${ }^{4}$			$\pm 0.04 \mathrm{~dB}$			$\pm 0.04 \mathrm{~dB}$
Damage level			+27 dBm			+27 dBm
Durability	1×10^{9} cycles			1×10^{9} cycles		

Quad 1x2 switch	1408 \| 62.5μ Core MMF OM1			1408 \| 62.5μ Core MMF OM1		
	Minimum	Typical	Maximum	Minimum	Typical	Maximum
Wavelength range	$\begin{gathered} 800 \text { to } \\ 1420 \text { nm } \end{gathered}$	$800 \text { to }$	$\begin{gathered} 800 \text { to } \\ 1420 \text { nm } \end{gathered}$	$\begin{gathered} 800 \text { to } \\ 1420 \text { nm } \end{gathered}$	$\begin{gathered} 800 \text { to } \\ 1420 \text { nm } \end{gathered}$	$\begin{gathered} 800 \text { to } \\ 1420 \text { nm } \end{gathered}$
Insertion loss 2.5 .7		0.9 dB	$1.1 \mathrm{~dB}^{5}$		0.9 dB	$1.1 \mathrm{~dB}^{5}$
Return loss ${ }^{8}$	20 dB			20 dB		
Polarization dependent loss ${ }^{2}$		TBD			TBD	
Wavelength dependent loss		TBD			TBD	
Crosstalk			$-25 d B$			$-25 d B$
Repeatability ${ }^{4}$			$\pm 0.02 \mathrm{~dB}$			$\pm 0.02 \mathrm{~dB}$
Damage level			$+27 \mathrm{dBm}$			$+27 \mathrm{dBm}$
Durability	1×10^{9} cycles			1×10^{9} cycles		

1x8 optical switch	1409 \| 62.5μ Core MMF OM1			1409 \| 62.5 μ Core MMF OM1		
	Minimum	Typical	Maximum	Minimum	Typical	Maximum
Wavelength range	$\begin{gathered} 800 \text { to } \\ 1420 \text { nm } \end{gathered}$	$\begin{gathered} 800 \text { to } \\ 1420 \mathrm{~nm} \end{gathered}$	$\begin{gathered} 800 \text { to } \\ 1420 \text { nm } \end{gathered}$	$\begin{gathered} 800 \text { to } \\ 1420 \text { nm } \end{gathered}$	$\begin{gathered} 800 \text { to } \\ 1420 \mathrm{~nm} \end{gathered}$	$\begin{gathered} 800 \text { to } \\ 1420 \text { nm } \end{gathered}$
Insertion loss $2.5,7$		1.0 dB	$1.4 \mathrm{~dB}^{5}$		1.0 dB	$1.4 \mathrm{~dB}^{5}$
Return loss ${ }^{8}$	20 dB			20 dB		
Polarization dependent loss ${ }^{2}$		TBD			TBD	
Wavelength dependent loss		TBD			TBD	
Crosstalk			$-20 \mathrm{~dB}$			$-20 \mathrm{~dB}$
Repeatability ${ }^{4}$			$\pm 0.02 \mathrm{~dB}$			$\pm 0.02 \mathrm{~dB}$
Damage level			+27 dBm			+27 dBm
Durability	1×10^{9} cycles			1×10^{9} cycles		

Polarization maintaining optical fiber switches

1x4 PM optical switch (1550 nm)	$1303{ }^{\circ}$ \| PM Panda 1550			$1303{ }^{\circ}$ \| PM Panda 1550		
	Minimum	Typical	Maximum	Minimum	Typical	Maximum
Wavelength range	$\begin{aligned} & 1520 \text { to } \\ & 1570 \text { nm } \end{aligned}$	$\begin{aligned} & 1520 \text { to } \\ & 1570 \text { nm } \end{aligned}$	$\begin{aligned} & 1520 \text { to } \\ & 1570 \text { nm } \end{aligned}$	$\begin{aligned} & 1520 \text { to } \\ & 1570 \text { nm } \end{aligned}$	$\begin{aligned} & 1520 \text { to } \\ & 1570 \mathrm{~nm} \end{aligned}$	$\begin{aligned} & 1520 \text { to } \\ & 1570 \text { nm } \end{aligned}$
Insertion loss ${ }^{2,7}$			1.5 dB			1.5 dB
Return loss ${ }^{8}$	50 dB			50 dB		
Wavelength dependent loss			0.25 dB			0.25 dB
Crosstalk			$-50 \mathrm{~dB}$			-50 dB
Repeatability ${ }^{4}$			$\pm 0.05 \mathrm{~dB}$			$\pm 0.05 \mathrm{~dB}$
Damage level			+27 dBm			+27 dBm
Durability	1×10^{9} cycles			1×10^{9} cycles		

1x4 PM optical switch (1310 nm)	$1304{ }^{\text { }}$ \| PM Panda 1310			1304° \| PM Panda 1310		
	Minimum	Typical	Maximum	Minimum	Typical	Maximum
Wavelength range	$\begin{gathered} 1290 \text { to } \\ 1330 \mathrm{~nm} \end{gathered}$	$\begin{aligned} & 1290 \text { to } \\ & 1330 \mathrm{~nm} \end{aligned}$	$\begin{gathered} 1290 \text { to } \\ 1330 \mathrm{~nm} \end{gathered}$	$\begin{gathered} 1290 \text { to } \\ 1330 \mathrm{~nm} \end{gathered}$	$\begin{aligned} & 1290 \text { to } \\ & 1330 \mathrm{~nm} \end{aligned}$	$\begin{gathered} 1290 \text { to } \\ 1330 \mathrm{~nm} \end{gathered}$
Insertion loss ${ }^{2,7}$			1.5 dB			1.5 dB
Return loss ${ }^{8}$	50 dB			50 dB		
Wavelength dependent loss			0.25 dB			0.25 dB
Crosstalk			-50 dB			-50 dB
Repeatability ${ }^{4}$			$\pm 0.05 \mathrm{~dB}$			$\pm 0.05 \mathrm{~dB}$
Damage level			+27 dBm			+27 dBm
Durability	1×10^{9} cycles			1×10^{9} cycles		

2×2 crossover PM optical switch (1310 nm)	1305° \| PM Panda 1310			1305° \| PM Panda 1310		
	Minimum	Typical	Maximum	Minimum	Typical	Maximum
Wavelength range	$\begin{gathered} 1270 \text { to } \\ 1350 \mathrm{~nm} \end{gathered}$	$\begin{gathered} 1270 \text { to } \\ 1350 \text { nm } \end{gathered}$	$\begin{gathered} 1270 \text { to } \\ 1350 \text { nm } \end{gathered}$	$\begin{gathered} 1270 \text { to } \\ 1350 \mathrm{~nm} \end{gathered}$	$\begin{gathered} 1270 \text { to } \\ 1350 \text { nm } \end{gathered}$	$\begin{gathered} 1270 \text { to } \\ 1350 \mathrm{~nm} \end{gathered}$
Insertion loss 2.5 .7		1.5 dB	1.8 dB		1.5 dB	1.8 dB
Return loss ${ }^{8}$		55 dB			55 dB	
Wavelength dependent loss		$<0.2 \mathrm{~dB}$			$<0.2 \mathrm{~dB}$	
Crosstalk		-60 dB			-60 dB	
Repeatability ${ }^{4}$			$\pm 0.02 \mathrm{~dB}$			$\pm 0.02 \mathrm{~dB}$
Damage level			+27 dBm			+27 dBm
Durability	1×10^{7} cycles			1×10^{7} cycles		
PER	> 18 dB (20 dB typical)			$>18 \mathrm{~dB}(20 \mathrm{~dB}$ typical)		

2×2 crossover PM optical switch (1550 nm)	$1306{ }^{\circ}$ \| PM Panda 1550			$1306{ }^{\circ}$ \| PM Panda 1550		
	Minimum	Typical	Maximum	Minimum	Typical	Maximum
Wavelength range	$\begin{aligned} & 1510 \text { to } \\ & 1590 \text { nm } \end{aligned}$	$\begin{aligned} & 1510 \text { to } \\ & 1590 \text { nm } \end{aligned}$	$\begin{gathered} 1510 \text { to } \\ 1590 \text { nm } \end{gathered}$	$\begin{aligned} & 1510 \text { to } \\ & 1590 \mathrm{~nm} \end{aligned}$	$\begin{aligned} & 1510 \text { to } \\ & 1590 \mathrm{~nm} \end{aligned}$	$\begin{aligned} & 1510 \text { to } \\ & 1590 \mathrm{~nm} \end{aligned}$
Insertion loss ${ }^{2,7}$		0.8 dB	1.2 dB		0.8 dB	1.2 dB
Return loss ${ }^{8}$		55 dB			55 dB	
Wavelength dependent loss		$<0.2 \mathrm{~dB}$			$<0.2 \mathrm{~dB}$	
Crosstalk		$-60 \mathrm{~dB}$			-60 dB	
Repeatability ${ }^{4}$			$\pm 0.02 \mathrm{~dB}$			$\pm 0.02 \mathrm{~dB}$
Damage level			+27 dBm			+27 dBm
Durability	1×10^{9} cycles			1×10^{9} cycles		
PER	> 18 dB (20 dB typical)			$>18 \mathrm{~dB}(20 \mathrm{~dB}$ typical)		

1x16 switch	1307^{9} \| PM Panda 1310			1307° \| PM Panda 1310		
	Minimum	Typical	Maximum	Minimum	Typical	Maximum
Wavelength range	$\begin{gathered} 1250 \text { to } \\ 1350 \text { nm } \end{gathered}$	$\begin{gathered} 1250 \text { to } \\ 1350 \text { nm } \end{gathered}$	$\begin{gathered} 1250 \text { to } \\ 1350 \mathrm{~nm} \end{gathered}$	$\begin{gathered} 1250 \text { to } \\ 1350 \text { nm } \end{gathered}$	$\begin{gathered} 1250 \text { to } \\ 1350 \mathrm{~nm} \end{gathered}$	$\begin{aligned} & 1250 \text { to } \\ & 1350 \text { nm } \end{aligned}$
Insertion loss ${ }^{2,7}$			1.5 dB			1.5 dB
Return loss ${ }^{\text {8 }}$	50 dB			50 dB		
Wavelength dependent loss		$\begin{aligned} & <0.3 \mathrm{~dB}+/- \\ & 20 \mathrm{~nm} \end{aligned}$			$\begin{aligned} & <0.3 \mathrm{~dB}+/- \\ & 20 \mathrm{~nm} \end{aligned}$	
Crosstalk			$-50 \mathrm{~dB}$			$-50 \mathrm{~dB}$
Repeatability ${ }^{4}$			$\pm 0.04 \mathrm{~dB}$			$\pm 0.04 \mathrm{~dB}$
Damage level			$+27 \mathrm{dBm}$			+27 dBm
Durability	1×10^{9} cycles			1×10^{9} cycles		
PER	15 dB			15 dB		

Notes

1. Specifications are valid at $23^{\circ} \mathrm{C} \pm 3^{\circ} \mathrm{C}$
2. Excluding connectors. Add 0.2 dB for SMF (0.1 dB for MMF) per connector
3. Power off isolation is same as crosstalk
4. Repeatability is defined after 100 cycles
5. IL is measured at 850 and $1310 \mathrm{~nm}, 23^{\circ}$
6. IL is measured at 850 and $1270-1411 \mathrm{~nm}, 23^{\circ}$
7. IL is for single-band. Dual-band option adds 0.3 dB
8. With FC/APC connectors
9. Preliminary specs
10. Multimode products are tested and calibrated using mode-conditioning setups defined in TIA EIA-455-43 FOTP-43 for Output Near-Field Radiation Patterns.

\square	Connector type $\mathrm{FC}=\mathrm{FC} / \mathrm{PC}$
SWITCH - XXXX - X - X - PXIE	FA $=\mathrm{FC} / \mathrm{APC}$
WITCH - XXXX - X - XX - MTR	SC = SC/PC
	SA = SC/APC
	[] = For models with MT connectors, refer to the MT connector types table below*
	Number of switches
	$1=1$ switch
	$2=2$ switches (only available for models 1001 and 1101)
	$4=4$ switches (only available for models 1008, 1108 \& 1408)
Model number	MULTI-MODE FIBER
SINGLE-MODE FIBER	$1101=1 \times 1$ switch, multi-mode, $50 \mu \mathrm{~m}$ core OM3
$1001=1 \times 1$ switch, single-mode, SMF-28	$1103=1 \times 4$ switch, multi-mode, $50 \mu \mathrm{~m}$ core OM3
$1003=1 \times 4$ switch, single-mode, SMF-28	$1104=2 \times 2$ crossover switch, multi-mode,
$1004=2 \times 2$ crossover switch,single-mode, SMF-28	$50 \mu \mathrm{~m}$ core OM3
$1005=1 \times 2$ duplex switch,single-mode, SMF-28	$1105=1 \times 2$ duplex switch, multi-mode, $50 \mu \mathrm{~m}$ core OM3
$1006{ }^{4}=1 \times 16$ switch, single-mode, SMF-28	$1106^{4}=1 \times 16$ switch, multi-mode, $50 \mu \mathrm{~m}$ core OM3
$1008^{2}=$ Quad 1x2 switch, single-mode, SMF-28	$1107^{3}=1 \times 12$ switch, multi-mode, $50 \mu \mathrm{~m}$ core OM3
$1009=1 \times 8$ switch, single-mode, SMF-28	$1108^{2}=$ Quad 1x2 switch, multi-mode, $50 \mu \mathrm{~m}$ core OM3
$1010^{3}=1 \times 8$ switch, single-mode, SMF-28,	$1403=1 \times 4$ switch, multi-mode, $62.5 \mu \mathrm{~m}$ core OM1
$1012^{3}=1 \times 12$ switch, single-mode, SMF-28	$1405=1 \times 2$ duplex switch, multi-mode, $62.5 \mu \mathrm{~m}$ core OM1
$1013^{3}=1 \times 24$ switch, single mode, SMF-28	$1406{ }^{4}=1 \times 16$ switch, multi-mode, $62.5 \mu \mathrm{~m}$ core OM1
$1201{ }^{1}=8 \times 8$ grid switch, single-mode, SMF-28	$1408^{2}=$ Quad 1x2 Switch, multi-mode, $62.5 \mu \mathrm{~m}$ core OM1
$1202{ }^{1}=16 \times 16$ grid switch, single-mode, SMF-28	$1409=1 \times 8$ switch, multi-mode, $62.5 \mu \mathrm{~m}$ core OM1
POLARIZATION MAINTAINING FIBER	1. This model is not available in MATRIQ
$1303=1 \times 4$ switch, PM Panda 1550	2. PXI version only available with SC/PC and SC/APC connectors
$1304=1 \times 4$ switch, PM Panda 1310	3. MT connector only
$1305=2 \times 2$ crossover switch, PM Panda $13101306=$	
$1306=2 \times 2$ crossover switch, PM Panda 1550	
$1307{ }^{4}=1 \times 16$ switch, PM Panda 1310	

*MT Connector types

A $=$ FC/PC + MTP-8/PC	$B A=F C / P C+M T P-12 / P C$	$\mathrm{CA}=\mathrm{FC} / \mathrm{PC}+\mathrm{MTP}-16 / \mathrm{PC}$	DA $=$ FC/PC + MTP-24/PC	$E A=F C / P C+M T P-36 / P C$
AB $=\mathrm{FC} / \mathrm{APC}+\mathrm{MTP}-8 / \mathrm{PC}$	BB = FC/APC + MTP-12/PC	CB $=$ FC/APC + MTP-16/PC	$D B=F C / A P C+M T P-24 / P C$	$E B=F C / A P C+M T P-36 / P C$
AC = SC/PC + MTP-8/PC	BC = SC/PC + MTP-12/PC	$\mathrm{CC}=\mathrm{SC} / \mathrm{PC}+\mathrm{MTP}-16 / \mathrm{PC}$	DC = SC/PC + MTP-24/PC	$E C=S C / P C+M T P-36 / P C$
AD = SC/APC + MTP-8/PC	BD $=$ SC/APC + MTP-12/PC	CD = SC/APC + MTP-16/PC	DD $=$ SC/APC + MTP-24/PC	$E D=S C / A P C+M T P-36 / P C$
AE = FC/PC + MTP-8/APC	$\mathrm{BE}=\mathrm{FC} / \mathrm{PC}+\mathrm{MTP}-12 / \mathrm{APC}$	$\mathrm{CE}=\mathrm{FC} / \mathrm{PC}+\mathrm{MTP}-16 / \mathrm{APC}$	$D E=F C / P C+M T P-24 / A P C$	$E E=F C / P C+M T P-36 / A P C$
$A F=F C / A P C+M T P-8 / A P C$	$\mathrm{BF}=\mathrm{FC} / \mathrm{APC}+\mathrm{MTP}-12 / \mathrm{APC}$	$\mathrm{CF}=\mathrm{FC} / \mathrm{APC}+\mathrm{MTP}-16 / A P C$	DF $=\mathrm{FC} / \mathrm{APC}+\mathrm{MTP}-24 / A P C$	$E F=F C / A P C+M T P-36 / A P C$
AG = SC/PC + MTP-8/APC	BG = SC/PC + MTP-12/APC	CG = SC/PC + MTP-16/APC	DG = SC/PC + MTP-24/APC	EG = SC/PC + MTP-36/APC
AH = SC/APC + MTP-8/APC	BH = SC/APC + MTP-12/APC	CH = SC/APC + MTP-16/APC	DH = SC/APC + MTP-24/APC	EH = SC/APC + MTP-36/APC

This product comes with a standard 1 year warranty.

With an extended warranty and calibration plan you'll spend more time focused on your priorities and less time worrying about maintenance.

Your choice: add a 3 or 5 year extended warranty when you buy.

Guarantee performance

Ensure your equipment is operating at the best it can be for reliable and accurate results.

Lower cost of ownership

Lock in savings and maximise your testing budget with a lower base cost of ownership.

Peace of mind
Spend less time worrying about maintenance and more on generating results.

Order a calibration plan when purchasing your Quantifi Photonics instruments and get additional discounts.

10\% Discount

On calibrations ordered at the time of purchase.

25\% Discount
Add on an extended warranty and receive a 25% discount on calibrations.

Over time and with regular use, all optical parts and connectors require re-calibration and maintenance to guarantee accurate and reliable performance. We recommend Quantifi Photonics optical instruments are recalibrated every 12 months. With an instrument calibration performed by Quantifi Photonics technicians you receive:

- Comprehensive calibration to factory specifications
- End-to-end inspection to ensure all instrument functions are working and connectors are clean
- Firmware, software and documentation updates
- Certificate of calibration which includes detailed test results

How to do I secure my extended warranty or calibration plan?

Contact your Quantifi Photonics sales representative or email sales@quantifiphotonics.com

Our portfolio of optical \& electro-optical test modules is rapidly expanding to meet a wide range of customer requirements and applications.

Tunable Laser Sources
Versatile telecom laser sources with full tunability across C or L bands. Narrow 100 kHz linewidth, up to 16.5 dBm of power, optional whisper mode to disable frequency dither.

Superluminescent Diode Broadband Light Source
Super-luminescent LED light source with high output power, large bandwidth and low spectral ripple and various wavelengths.

Polarization Controller \& Scrambler

High-speed automated polarization control with broad wavelength coverage from 1260 nm to 1650 nm , low insertion loss and back reflection. Full remote control via intuitive GUI, LabVIEW or SCPI.

Optical Spectrum
Analyzer (OSA)
Cost-effective, spectral measurement in a compact module with built-in analysis for: SMSR, OSNR \& spectral width. Targeted wavelengths for specific applications in O band, C band $\& \mathrm{~L}$ band.

Photonic Doppler Velocimeter (PDV)
Purpose-built module for Photonic Doppler Velocimetry (PDV). A circulator, two VOAs and a passive coupler all built into one compact module.

\square

Fixed Wavelength Laser Sources

Highly customizable laser platform. Select required wavelength, power and fiber type for a customized solution.

Optical-to-Electrical Converter

High bandwidth, broadband O-to-E converter. Available in a range of configurations; choose from 1 or 2 channels, AC or DC coupling and various conversion gain and operating wavelength ranges.

Optical Power Meters

Fast terminating or inline monitoring of optical signal power from - 60 to +10 dBm across 750 - 1700 nm wavelengths. Model with logarithmic analog output for applications such as silicon photonics fiber alignment.

Passive Component Integration

Integrate passive optical components of your choice such as WDM couplers, splitters, band-pass filters, PM beamsplitters and circulators. Models support SMF, MMF and PMF.

Optical Switch

Proven reliability and fast switching time. Wide variety of switch onfigurations: 1×4, 1x16, 16×16 and more. Models support SMF, MMF and PMF.
 Variable Optical
Attenuator (VOA)

Fast attenuation speed with low insertion loss and built-in power monitoring. Operates in fixed attenuation or constant output power modes. Models support SMF, MMF and PMF connector types.

4-

Bit Error Rate Tester (BERT)

4 or 8-channel Pulse Pattern Generator and Error Detector at rates up to 29 Gbps for the design, characterization
 and production of optical transceivers and opto-
electrical components. transceivers and opto-
electrical components.

Passive Component Storage

Protect and store your own
 passive fiber optic components such as splitters, connector adaptor patchcords, WDM couplers, and isolators in one handy module.

Swept, Tunable Continuous Wave Laser

Swept, tunable continuous wave (CW) laser source with 0.01 dB power stability and $400 \mathrm{~nm} / \mathrm{s}$ high-speed scan rate for R\&D
 and production testing.

$$
5-2-2
$$

Test. Measure. Solve.

Quantifi Photonics is transforming the world of photonics test and measurement. Our portfolio of optical and electrical test instruments is rapidly expanding to meet the needs of engineers and scientists around the globe. From enabling ground-breaking experiments to driving highly efficient production testing, you'll find us working with customers to solve complex problems with experience and innovation.

To find out more, get in touch with us today.

General Enquiries	sales@quantifiphotonics.com
Technical Support	support@quantifiphotonics.com
Phone - NZ	+6494784849
Phone - USA	$+1-800-803-8872$

quantifiphotonics.com

